
IF2211 Algorithm Strategies, Semester II Academic Year 2023/2024

Anomaly Detection for Cancer Prediction Using

Convex Hull Method on a Normal Distribution

Parameter Space

Julian Chandra Sutadi - 13522080

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

julian.sutadi@gmail.com

Abstract—This paper aims to apply the Convex Hull Method

(Conv.Hull-PS) for anomaly detection in a cancer prediction

model. A dataset of cancer patients with health-related features is

analyzed and used to construct points inside a two-dimensional

normal distribution parameter space. Another set of points is

obtained from pairs of unknown data and known data. The area

of intersection between the convex hull of the two sets is used to

determine the value of anomalies, which are features suspected to

be indicative of cancerous individuals.

Keywords—divide and conquer; convex hull; anomaly detection;

parameter space; learning algorithm.

I. INTRODUCTION

Cancer detection is crucial for effective treatment, and
advanced computational methods offer promising tools for early
identification. This paper explores anomaly detection for cancer
prediction, using the Convex Hull Method within a normal
distribution parameter space.

Anomaly detection, or outlier detection, is the identification
of abnormal data points, that deviate from the expected behavior,
making them inconsistent with the rest of the dataset. It is a
concept useful in statistics and machine learning which attempts
to identify unexpected changes in the dataset’s normal behavior
[1].

The convex hull, an important concept in computational
geometry, can play an important role in anomaly detection. It is
used to outline the shape of the convex polygon surrounding the
data pair points in the two-dimensional parameter plane. Within
cancer prediction, we construct a normal distribution parameter
space based on health-related features of patients. Then, by
employing the Convex Hull Method, we delineate the
boundaries of known data points (from cancer patient records)
and unknown data points.

Through this paper, we aim to demonstrate how convex hull,
specifically the Conv.Hull-PS algorithm can be utilized in early
cancer detection, ultimately improving outcomes for patients
through early intervention and treatment.

II. FUNDAMENTAL THEORY

A. Convex Hull

Convex hull is an important part of computational geometry.
A set of points on a planar plane is convex if and only if for every
pair of points 𝑝 and 𝑞 on the plane, all line segments that have 𝑝
and 𝑞 as its endpoints are elements of the initial set of points.
The convex hull of a set of points 𝑆 is the smallest convex set
(convex polygon) that contains 𝑆.

Fig. 1. Convex hull for eight points. [2]

One approach to find the convex hull of a set is by using the
Quickhull algorithm which uses the Divide and Conquer
approach, similar to that of Quicksort algorithm. For a set of
points 𝑆 in a 2-dimensional plane with 𝑛 elements, the steps of
Quickhull algorithm are as follows [2]:

1. Sort the elements by their x-coordinates in ascending
order. If two elements have the same x-coordinate, sort
them by their y-coordinates in ascending order. Let 𝑝𝑖
be the i-th element of the sorted set.

2. The line connecting 𝑝1 and 𝑝𝑛 divides 𝑆 into two parts:
𝑆1 (the set of points on the left or above the line 𝑝1𝑝𝑛)
and 𝑆2 (the set of points on the right or below the line
𝑝1𝑝𝑛).

3. To check if a point is on the left (or above) a line
formed by two points, use the determinant method

IF2211 Algorithm Strategies, Semester II Academic Year 2023/2024

 |
𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

| ()

which is equivalent to

 𝑥1𝑦2 + 𝑥3𝑦1 + 𝑥2𝑦3 − 𝑥3𝑦2 − 𝑥2𝑦1 − 𝑥1𝑦3 ()

The point (𝑥3, 𝑦3) is on the left side of the line (𝑥1, 𝑦1)
to (𝑥2, 𝑦2) if the determinant result is positive.

4. All points in 𝑆 that lie on the line 𝑝1𝑝𝑛 (other than the
points𝑝1 and 𝑝𝑛) cannot form a convex hull, so they
can be ignored.

5. The set of points in S1 can form the upper part of the
convex hull, and the set of points in S2 can form the
lower part of the convex hull.

6. For a section (e.g. 𝑆2), there are two possibilities:

a. If there are no other points besides 𝑆1, then the
points 𝑝1 and 𝑝𝑛 form the convex hull of 𝑆1.

b. If 𝑆1 is not empty, select a point that is the
farthest from the line 𝑝1𝑝𝑛 (call it 𝑝𝑚𝑎𝑥). If
there are several points at the same distance,
choose the point that maximizes the angle
𝑝𝑚𝑎𝑥𝑝1𝑝𝑛. All points inside the triangle
𝑝𝑚𝑎𝑥𝑝1𝑝𝑛 are ignored in further examination.

7. Determine the set of points that are on the left side of
the line 𝑝1𝑝𝑚𝑎𝑥 (which becomes 𝑆1,1) and on the right

side of the line 𝑝1𝑝𝑚𝑎𝑥 (which becomes 𝑆1,2).

8. Do steps 6 and 7 for 𝑆2. Here we are dividing the

problems into subproblems (Divide and Conquer).

9. Repeat from step 5 until there remains no point in the
left or right of line 𝑝𝑖𝑝𝑚𝑎𝑥 or 𝑝𝑚𝑎𝑥𝑝𝑗 for all generated

𝑝𝑚𝑎𝑥 (𝑝𝑚𝑎𝑥 as defined in step 6).

10. Return the points 𝑝1, 𝑝𝑛, and all generated 𝑝𝑚𝑎𝑥.

B. Normal Distribution

The normal distribution (also known as the Gaussian
distribution) is a statistical distribution proposed by Carl
Friedrich Gauss in 1809 which is by far the most important
statistical distribution [3]. Below are some characteristics of the
normal distribution:

1. Parameters: 𝜇, 𝜎

2. Range: (−∞, ∞)

3. Notation: N(𝜇, 𝜎2)

4. Probability density function (pdf):

 𝑓(𝑥) =
1

𝜎√2𝜋
e−(𝑥−𝜇)2/2𝜎2

 ()

The shape of the pdf is symmetrical and similar to a
bell. It is therefore commonly called a “bell curve”.

5. Cumulative density function (cdf):

 ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
=

1

𝜎√2𝜋
∫ e−(𝑥−𝜇)2/2𝜎2

𝑑𝑥
∞

−∞
 ()

A normal distribution is said to be standard (standard normal
distribution) if the parameters are 𝜇 = 0 and 𝜎2 = 1.

Fig. 2. A standard normal distribution. [3]

There are two notions of normal distribution that are
important in anomaly detection.

1. The sum of normal random variables is also a normal
random variable.

2. In analyzing data that are distributed normally, a
common way of finding outliers is to calculate the
value of 3𝜎. This value becomes a threshold to evaluate
datum 𝑥, which will be classified as an outlier if 𝑥 <
−3𝜎 or 𝑥 > 3𝜎.

C. Central Limit Theorem

Suppose 𝑋1, 𝑋2, … , 𝑋𝑛 are independent and identically
distributed random variables with statistical parameters 𝜇 and 𝜎.

For each 𝑛, let 𝑆𝑛 denotes the sum and �̅� the average of
𝑋1, 𝑋2, … , 𝑋𝑛. By calculating the value of mean (𝜇) and

variance (𝜎2) from both 𝑆𝑛 and �̅�𝑛, it will be discovered that

both 𝑆𝑛 and �̅�𝑛 have the same standardization value

 𝑍𝑛 =
𝑆𝑛−𝑛𝜇

𝜎√𝑛
=

�̅�𝑛−𝜇

𝜎/√𝑛
 ()

The Central Limit Theorem (CLT) then states that for large 𝑛,

 �̅�𝑛 ≈ N(𝜇, 𝜎2𝑛), 𝑆𝑛 ≈ N(𝑛𝜇, 𝑛𝜎2), 𝑍𝑛 ≈ N(0,1). ()

Therefore, according to the CLT, the mean distribution of
random variables for a large number of data will be a standard
normal distribution regardless of the underlying distribution of
the random variables.

D. Anomaly Detection Using Convex Hull on a 2D Normal

Distribution Parameter Space

Anomaly Detection is a task in machine learning of finding
unusual patterns (or outliers) that do not conform to the expected
behavior of the dataset. Reference [4] proposed a method of
anomaly detection called Conv.Hull-PS that involves an analysis
of the area of overlapping region between two convex hulls over
a 2-dimensional normal distribution parameter space (𝜇, 𝜎).

IF2211 Algorithm Strategies, Semester II Academic Year 2023/2024

Fig. 3. Steps of computing points in the normal distribution parameter

space. [4]

In the Conv.Hull-PS method, one convex hull is obtained
from the set of points where each element is calculated from
normal data pairs. Another convex hull is obtained from the set
of points where each element is calculated from a newly
observed datum and a known normal datum. The area of the first
convex hull is denoted as 𝐻𝑁 and the second area of 𝐻𝑈. The
area of intersection between 𝐻𝑁 and 𝐻𝑈 is denoted as 𝐼.

A datum is classified as anomalous if it is above a certain
threshold d calculated based on the values 𝐻𝑁, 𝐻𝑈, and 𝐼 as
follows

 𝑑 = (𝐻𝑁 − 𝐼) + (𝐻𝑈 − 𝐼) ()

This value 𝑑 can be obtained by applying learning algorithms
over a training set, cross-validation set, and test set while trying
to find the value 𝑑 that produces the best accuracy.

III. IMPLEMENTATION

In this section, a demonstration of the convex-hull method
for anomaly detection will be conducted. The focus of this
section is to demonstrate the utilization of convex-hull method,
particularly that which utilizes the Quickhull approach for
anomaly detection. The learning algorithm workflow is adapted
accordingly. The program is written in Python.

A. Dataset

The dataset used in this paper is provided by [5] and contains
medical and lifestyle information for 1500 patients, structured to
predict the presence of cancer based on various features. The
dataset has been preprocessed and cleaned. Below is the
description for each feature in the dataset

TABLE I. DATASET FEATURE DESCRIPTION

Feature Type Range/Values Description

Age Integer 20 to 80
Represents the

patient's age.

Gender Binary
0: Male

1: Female

Represents the

gender of the patient.

BMI Continuous 15 to 40

Represents the Body

Mass Index of the

patient.

Smoking Binary
0: No

1: Yes

Indicates the

smoking status of the

patient.

GeneticRisk Categorical

0: Low

1: Medium

2: High

Represents the

genetic risk level for

cancer.

PhysicalActivity Continuous 0 to 10

Represents the

number of hours per

week spent on

physical activities.

AlcoholIntake Continuous 0 to 5

Represents the

number of alcohol

units consumed per

week.

CancerHistory Binary
0: No

1: Yes

Indicates whether the

patient has a personal

history of cancer.

Diagnosis Binary
0: No Cancer

1: Cancer

The target variable

indicating the cancer

diagnosis status.

B. Convex Hull Algorithm

The convex hull algorithm used is the Quicksort algorithm
as described in the Fundamental Theory section with several
modifications to improve the time and space complexity of the
code. Below are the steps for the Quickhull algorithm

1. Check the number of points. If it is less than three then
return the points.

2. Sort the points and find the first and last point from the
sorted set of points.

3. Divide the set into points to the left and to the right of
the line whose endpoints are the first and last points.

4. Find the hull of the two sets using the find_hull
function. The find_hull function utilizes the distance
function. This distance function will compute the cross
products from vector formed by the three points (a
point, and two other points that form the line) then
return negative if it is to the right of the line and
positive if it is to the left of the line.

5. The find_hull function is called recursively.

6. The Quickhull function will return an array containing
the first point, the result from the find_hull function for
the left set, the the last point, and the result from the
find_hull function for the right set of points.

The optimization is made in the 4th step, allowing the
algorithm to compute the distance only once and using the sign
of the distance to determine the orientation of the point to the
line.

Fig. 4. Convex hull of a set of points

IF2211 Algorithm Strategies, Semester II Academic Year 2023/2024

C. Data Preparation

Since the dataset is preprocessed, minor preparation is done
by the author. A normalization process is done for each feature
of the dataset using the z-score normalization method. The data
is divided into two data frames, namely the diagnosis_0_data (no
cancer) and anomaly (cancer).

D. Finding The Suitable Threshold

In order to find the suitable threshold of 𝑑, the model is being
trained by the following steps:

1. Classify the data according to the value of the
‘Diagnosis’ attribute.

2. Set a value 𝑑𝑖𝑛𝑖𝑡.

3. 85% of the data from the no cancer data is used as a
training set. The remaining 15% is used in a test set
with 50% of the data from the cancer data.

4. Compute the convex hull 𝐻𝑁 of the training set.

5. For each datum from the test set, pair it with a point
from the training set. Compute the convex hull 𝐻𝑈 of
this set of pairs.

6. Compute the value 𝑑 from the resulting set. If 𝑑 is
greater than 𝑑𝑖𝑛𝑖𝑡, the predicted value is 1, otherwise it
is 0.

7. Compute the accuracy of model with the value 𝑑𝑖𝑛𝑖𝑡 .

8. Repeat from step 2 for each iteration.

9. Select the value 𝑑𝑖𝑛𝑖𝑡 that gives the best accuracy.

The following is the pseudocode for each function involved in
the process

function calculate_parameter_space_points(pairs,

dataset):

 # Initialize an empty array

 concatenated_array =

create_empty_array(length(pairs), 2 *

number_of_columns_in_dataset)

 # Iterate through each pair of indices

 for idx, pair in enumerate(pairs):

 # Concatenate the corresponding rows from the

dataset

 concatenated_values =

concatenate_rows(dataset.loc[pair[0]],

dataset.loc[pair[1]])

 # Assign the concatenated values to the array

 concatenated_array[idx] = concatenated_values

 # Calculate the means and standard deviations

for each row of the concatenated array

 means = calculate_means(concatenated_array)

 stds = calculate_stds(concatenated_array)

 # Create the parameter space points by stacking

means and standard deviations horizontally

 parameter_space_points =

stack_horizontally(means, stds)

 return parameter_space_points

function generate_output_convex_hull(original_df,

new_element):

 new_row_df = pd.DataFrame([new_element],

columns=original_df.columns)

 dataset = original_df._append(new_row_df,

ignore_index=True)

 original_indexes = np.arange(len(original_df))

 new_index = len(original_df)

 pairs = np.column_stack((original_indexes,

np.full_like(original_indexes, new_index)))

 output_parameter_space_points =

calculate_parameter_space_points(pairs, dataset)

 return quickhull(output_parameter_space_points)

function

plot_convex_hulls(convex_hull_points_normal,

convex_hull_points_anomaly, data_normal=None,

data_anomaly=None):

 """

 Plots the convex hulls of normal and anomaly

points on a 2D parameter space.

 Parameters:

 - convex_hull_points_normal: numpy array of

points forming the convex hull for normal data

 - convex_hull_points_anomaly: numpy array of

points forming the convex hull for anomaly data

 - data_normal: (optional) original normal data

points to plot

 - data_anomaly: (optional) original anomaly data

points to plot

 """

 plt.figure(figsize=(5, 4))

 # Plot original normal data points

 if data_normal is not None:

 plt.scatter(data_normal[:, 0], data_normal[:,

1], color='green', label='Normal Data')

 # Plot original anomaly data points

IF2211 Algorithm Strategies, Semester II Academic Year 2023/2024

 if data_anomaly is not None:

 plt.scatter(data_anomaly[:, 0],

data_anomaly[:, 1], color='red', label='Anomaly

Data')

 # Plot convex hull for normal data

 hull_normal =

ConvexHull(convex_hull_points_normal)

 for simplex in hull_normal.simplices:

 plt.plot(convex_hull_points_normal[simplex,

0], convex_hull_points_normal[simplex, 1],

'green', lw=2, label='Normal Hull' if simplex[0]

== 0 else "")

 # Plot convex hull for anomaly data

 hull_anomaly =

ConvexHull(convex_hull_points_anomaly)

 for simplex in hull_anomaly.simplices:

 plt.plot(convex_hull_points_anomaly[simplex,

0], convex_hull_points_anomaly[simplex, 1],

'blue', lw=2, label='Anomaly Hull' if simplex[0]

== 0 else "")

 plt.xlabel('μ')

 plt.ylabel('σ')

 plt.legend()

 plt.title('Convex Hulls for Normal and Anomaly

Data')

 plt.show()

function intersection_area(hull1, hull2):

 """

 Calculate the intersection area of two convex

hulls.

 Parameters:

 hull1 (list of list of floats): Coordinates of

the first convex hull.

 hull2 (list of list of floats): Coordinates of

the second convex hull.

 Returns:

 float: The area of the intersection of the two

convex hulls.

 """

 # Create polygons from the convex hull

coordinates

 polygon1 = Polygon(hull1)

 polygon2 = Polygon(hull2)

 # Calculate the intersection of the two polygons

 intersection = polygon1.intersection(polygon2)

 # Return the area of the intersection

 return intersection.area

function param_d(hull1, hull2):

 """

 Calculate the parameter d for two convex hulls.

 Parameters:

 hull1 (list of list of floats): Coordinates of

the first convex hull.

 hull2 (list of list of floats): Coordinates of

the second convex hull.

 Returns:

 float: The parameter d.

 """

 polygon1 = Polygon(hull1)

 polygon2 = Polygon(hull2)

 # Calculate the intersection of the two polygons

 intersection = polygon1.intersection(polygon2)

 return polygon1.area + polygon2.area - 2 *

intersection.area

list_of_d_values = []

list_of_accuracy_score = []

normal_size = len(diagnosis_0_data)

anomaly_size = len(anomaly)

d = 0.25

num_of_iteration = 10

increment = (0.65 - d) / num_of_iteration

for i in range(10):

 print("Iteration -", str(i+1))

 d += increment

 list_of_d_values.append(d)

 normal_train_size = int(0.85 * normal_size)

 normal_train_indices =

np.random.choice(normal_size, normal_train_size,

replace=False)

IF2211 Algorithm Strategies, Semester II Academic Year 2023/2024

 normal_train_set =

diagnosis_0_data.iloc[normal_train_indices]

 # Create normal test set from indices not in

training set

 normal_test_set =

diagnosis_0_data.drop(normal_train_set.index)

 # Randomly select indices for anomaly test set

 anomaly_test_indices =

np.random.choice(anomaly_size, int(0.5 *

anomaly_size), replace=False)

 anomaly_test_set =

anomaly.iloc[anomaly_test_indices]

 # Combine normal and anomaly test sets

 test_set = pd.concat([normal_test_set,

anomaly_test_set])

 true_labels = np.zeros(len(test_set))

 true_labels[len(normal_test_set):] = 1 # Set

labels for anomaly instances

 selected_train_pairs =

np.array(list(combinations(normal_train_set.index,

2)))

 selected_train_pairs_indices =

np.random.choice(len(selected_train_pairs), 500,

replace=False)

 selected_train_pairs =

selected_train_pairs[selected_train_pairs_indices]

 train_parameter_space_points =

calculate_parameter_space_points(selected_train_pa

irs, normal_train_set)

 train_convex_hull =

quickhull(train_parameter_space_points)

 predictions = np.zeros(len(test_set))

 for idx in range(len(test_set)):

 test_parameter_space_points =

generate_output_convex_hull(normal_train_set,

test_set.iloc[idx])

 test_convex_hull =

quickhull(test_parameter_space_points)

 predictions[idx] = 1 if

param_d(train_convex_hull, test_convex_hull) > d

else 0

 accuracy = accuracy_score(true_labels,

predictions)

 print("Accuracy:", accuracy)

 print()

 list_of_accuracy_score.append(accuracy)

IV. RESULTS

From a random sampling of 10 data, it is observed that the
value of parameter 𝑑 ranges from around 0.25 to 0.65. The
training is conducted based on this sampling. Ten iterations are
done as explained in the previous section is conducted. The
results are as follows

TABLE II. ACCURACY RESULTS FOR EACH ITERATION

Iteration d-value Accuracy

1 0.29 0.8166666666666667

2 0.33 0.7976190476190477

3 0.37 0.7047619047619048

4 0.41 0.7095238095238096

5 0.45 0.5452380952380952

6 0.49 0.6333333333333333

7 0.53 0.3904761904761905

8 0.57 0.4595238095238095

9 0.61 0.3476190476190476

10 0.65 0.3476190476190476

Therefore, the model performs best with a d-value of 0.29,
giving an accuracy of 81.67% in the test set of the data.

V. CONCLUSTION

The Conv.Hull-PS anomaly detection method has proven
itself to be capable of detecting anomalous features in possible
cancer patients, despite being tested in a simplified machine
learning workflow. With this algorithm, the underlying
distribution of each feature is unimportant, as all are represented
with a point in the normal distribution parameter space.

Overall, the findings suggest that the Conv.Hull-PS
algorithm can serve as a valuable tool for early cancer detection,
potentially leading to improved outcomes for patients through
early intervention and treatment. However, further research and
validation are necessary to confirm the effectiveness and
generalizability of this approach across different datasets and
populations.

APPENDIX

The code implementation used in this paper can be seen and
retrieved on my Kaggle notebook:

https://www.kaggle.com/code/julianchandrasutadi/anomaly
-detection-using-convex-hull-method

ACKNOWLEDGMENT

The author would like to extend heartfelt appreciation to Dr.

Nur Ulfa Maulidevi, S.T, M.Sc. who served as the author’s

instructor this past semester. Additionally, the author wants to

express gratitude to all IF2211 Algorithm Strategies lecturers,

Dr. Ir. Rinaldi Munir, S.T., M.T. and Ir. Rila Mandala, M.Eng.,

Ph.D., who have provided the academic resources necessary for

completing this paper.

https://www.kaggle.com/code/julianchandrasutadi/anomaly-detection-using-convex-hull-method
https://www.kaggle.com/code/julianchandrasutadi/anomaly-detection-using-convex-hull-method

IF2211 Algorithm Strategies, Semester II Academic Year 2023/2024

REFERENCES

[1] J. Barnard and C. Stryker. (2023). "Anomaly Detection". [Online]:
https://www.ibm.com/topics/anomaly-detection. Accessed June 12th

[2] Munir, Rinaldi. (2024). "Algoritma Divide and Conquer (Bagian 4)".
[Online]: https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2023-
2024/Algoritma-Divide-and-Conquer-(2024)-Bagian4.pdf. Accessed
June 12th

[3] J. Orloff and J. Bloom. (2022). "Introduction to Probability and Statistic".
[Online]: https://ocw.mit.edu/courses/18-05-introduction-to-probability-
and-statistics-spring-2022/mit18_05_s22_probability.pdf. Accessed June
12th

[4] G.B.P, Costa et al., (2013). "Partially supervised anomaly detection using
convex hulls on a 2D parameter space". [Online]:
https://gbpcosta.github.io/assets/publications/Costa_PSL2013.pdf.
Accessed June 12th

[5] R.E. Kharuoa, (2024), "Cancer Prediction Dataset",
https://www.kaggle.com/datasets/rabieelkharoua/cancer-prediction-
dataset

DECLARATION OF ORIGINALITY

I, the undersigned below, the Author of this paper, hereby

declare that this paper is my own writing, not an adaptation or

translation of someone else's paper, and not plagiarized

Bandung, 12 Juni 2024

Julian Chandra Sutadi 13522080

https://www.ibm.com/topics/anomaly-detection
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2023-2024/Algoritma-Divide-and-Conquer-(2024)-Bagian4.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2023-2024/Algoritma-Divide-and-Conquer-(2024)-Bagian4.pdf
https://ocw.mit.edu/courses/18-05-introduction-to-probability-and-statistics-spring-2022/mit18_05_s22_probability.pdf
https://ocw.mit.edu/courses/18-05-introduction-to-probability-and-statistics-spring-2022/mit18_05_s22_probability.pdf
https://gbpcosta.github.io/assets/publications/Costa_PSL2013.pdf
https://www.kaggle.com/datasets/rabieelkharoua/cancer-prediction-dataset
https://www.kaggle.com/datasets/rabieelkharoua/cancer-prediction-dataset

