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Abstract—This paper aims to apply the Convex Hull Method 

(Conv.Hull-PS) for anomaly detection in a cancer prediction 

model. A dataset of cancer patients with health-related features is 

analyzed and used to construct points inside a two-dimensional 

normal distribution parameter space. Another set of points is 

obtained from pairs of unknown data and known data. The area 

of intersection between the convex hull of the two sets is used to 

determine the value of anomalies, which are features suspected to 

be indicative of cancerous individuals. 

Keywords—divide and conquer; convex hull; anomaly detection; 

parameter space; learning algorithm. 

I.  INTRODUCTION 

Cancer detection is crucial for effective treatment, and 
advanced computational methods offer promising tools for early 
identification. This paper explores anomaly detection for cancer 
prediction, using the Convex Hull Method within a normal 
distribution parameter space. 

Anomaly detection, or outlier detection, is the identification 
of abnormal data points, that deviate from the expected behavior, 
making them inconsistent with the rest of the dataset. It is a 
concept useful in statistics and machine learning which attempts 
to identify unexpected changes in the dataset’s normal behavior 
[1]. 

The convex hull, an important concept in computational 
geometry, can play an important role in anomaly detection. It is 
used to outline the shape of the convex polygon surrounding the 
data pair points in the two-dimensional parameter plane. Within 
cancer prediction, we construct a normal distribution parameter 
space based on health-related features of patients. Then, by 
employing the Convex Hull Method, we delineate the 
boundaries of known data points (from cancer patient records) 
and unknown data points. 

Through this paper, we aim to demonstrate how convex hull, 
specifically the Conv.Hull-PS algorithm can be utilized in early 
cancer detection, ultimately improving outcomes for patients 
through early intervention and treatment. 

II. FUNDAMENTAL THEORY 

A. Convex Hull 

Convex hull is an important part of computational geometry. 
A set of points on a planar plane is convex if and only if for every 
pair of points 𝑝 and 𝑞 on the plane, all line segments that have 𝑝 
and 𝑞 as its endpoints are elements of the initial set of points. 
The convex hull of a set of points 𝑆 is the smallest convex set 
(convex polygon) that contains 𝑆. 

 

Fig. 1. Convex hull for eight points. [2] 

One approach to find the convex hull of a set is by using the 
Quickhull algorithm which uses the Divide and Conquer 
approach, similar to that of Quicksort algorithm. For a set of 
points 𝑆 in a 2-dimensional plane with 𝑛 elements, the steps of 
Quickhull algorithm are as follows [2]: 

1. Sort the elements by their x-coordinates in ascending 
order. If two elements have the same x-coordinate, sort 
them by their y-coordinates in ascending order. Let 𝑝𝑖 
be the i-th element of the sorted set. 

2. The line connecting 𝑝1 and 𝑝𝑛 divides 𝑆 into two parts: 
𝑆1 (the set of points on the left or above the line 𝑝1𝑝𝑛) 
and 𝑆2 (the set of points on the right or below the line 
𝑝1𝑝𝑛). 

3. To check if a point is on the left (or above) a line 
formed by two points, use the determinant method 
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 |
𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

| () 

which is equivalent to 

 𝑥1𝑦2 + 𝑥3𝑦1 + 𝑥2𝑦3 − 𝑥3𝑦2 − 𝑥2𝑦1 − 𝑥1𝑦3 () 

The point (𝑥3, 𝑦3) is on the left side of the line (𝑥1, 𝑦1) 
to (𝑥2, 𝑦2) if the determinant result is positive. 

4. All points in 𝑆 that lie on the line 𝑝1𝑝𝑛 (other than the 
points𝑝1 and 𝑝𝑛) cannot form a convex hull, so they 
can be ignored. 

5. The set of points in S1 can form the upper part of the 
convex hull, and the set of points in S2 can form the 
lower part of the convex hull. 

6. For a section (e.g. 𝑆2), there are two possibilities: 

a. If there are no other points besides 𝑆1, then the 
points 𝑝1 and 𝑝𝑛 form the convex hull of 𝑆1. 

b. If 𝑆1 is not empty, select a point that is the 
farthest from the line 𝑝1𝑝𝑛 (call it 𝑝𝑚𝑎𝑥). If 
there are several points at the same distance, 
choose the point that maximizes the angle 
𝑝𝑚𝑎𝑥𝑝1𝑝𝑛. All points inside the triangle 
𝑝𝑚𝑎𝑥𝑝1𝑝𝑛 are ignored in further examination. 

7. Determine the set of points that are on the left side of 
the line 𝑝1𝑝𝑚𝑎𝑥 (which becomes 𝑆1,1) and on the right 

side of the line 𝑝1𝑝𝑚𝑎𝑥 (which becomes 𝑆1,2). 

8. Do steps 6 and 7 for 𝑆2. Here we are dividing the 

problems into subproblems (Divide and Conquer). 

9. Repeat from step 5 until there remains no point in the 
left or right of line 𝑝𝑖𝑝𝑚𝑎𝑥 or 𝑝𝑚𝑎𝑥𝑝𝑗 for all generated 

𝑝𝑚𝑎𝑥 (𝑝𝑚𝑎𝑥 as defined in step 6). 

10. Return the points 𝑝1, 𝑝𝑛, and all generated 𝑝𝑚𝑎𝑥. 

B. Normal Distribution 

The normal distribution (also known as the Gaussian 
distribution) is a statistical distribution proposed by Carl 
Friedrich Gauss in 1809 which is by far the most important 
statistical distribution [3]. Below are some characteristics of the 
normal distribution: 

1. Parameters: 𝜇, 𝜎 

2. Range: (−∞, ∞) 

3. Notation: N(𝜇, 𝜎2) 

4. Probability density function (pdf): 

 𝑓(𝑥) =
1

𝜎√2𝜋
e−(𝑥−𝜇)2/2𝜎2

 () 

The shape of the pdf is symmetrical and similar to a 
bell. It is therefore commonly called a “bell curve”. 

5. Cumulative density function (cdf): 

 ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
=

1

𝜎√2𝜋
∫ e−(𝑥−𝜇)2/2𝜎2

𝑑𝑥
∞

−∞
 () 

A normal distribution is said to be standard (standard normal 
distribution) if the parameters are 𝜇 = 0 and 𝜎2 = 1. 

 

Fig. 2. A standard normal distribution. [3]  

There are two notions of normal distribution that are 
important in anomaly detection. 

1. The sum of normal random variables is also a normal 
random variable. 

2. In analyzing data that are distributed normally, a 
common way of finding outliers is to calculate the 
value of 3𝜎. This value becomes a threshold to evaluate 
datum 𝑥, which will be classified as an outlier if 𝑥 <
−3𝜎 or  𝑥 > 3𝜎. 

C. Central Limit Theorem 

Suppose 𝑋1, 𝑋2, … , 𝑋𝑛 are independent and identically 
distributed random variables with statistical parameters 𝜇 and 𝜎. 

For each 𝑛, let 𝑆𝑛 denotes the sum and �̅� the average of 
𝑋1, 𝑋2, … , 𝑋𝑛. By calculating the value of mean (𝜇) and 

variance (𝜎2) from both 𝑆𝑛 and �̅�𝑛, it will be discovered that 

both 𝑆𝑛 and �̅�𝑛 have the same standardization value 

 𝑍𝑛 =
𝑆𝑛−𝑛𝜇

𝜎√𝑛
=

�̅�𝑛−𝜇

𝜎/√𝑛
 () 

The Central Limit Theorem (CLT) then states that for large 𝑛, 

 �̅�𝑛 ≈ N(𝜇, 𝜎2𝑛),   𝑆𝑛 ≈ N(𝑛𝜇, 𝑛𝜎2),   𝑍𝑛 ≈ N(0,1). () 

Therefore, according to the CLT, the mean distribution of 
random variables for a large number of data will be a standard 
normal distribution regardless of the underlying distribution of 
the random variables. 

D. Anomaly Detection Using Convex Hull on a 2D Normal 

Distribution Parameter Space 

Anomaly Detection is a task in machine learning of finding 
unusual patterns (or outliers) that do not conform to the expected 
behavior of the dataset. Reference [4] proposed a method of 
anomaly detection called Conv.Hull-PS that involves an analysis 
of the area of overlapping region between two convex hulls over 
a 2-dimensional normal distribution parameter space (𝜇, 𝜎).  
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Fig. 3. Steps of computing points in the normal distribution parameter 

space. [4] 

In the Conv.Hull-PS method, one convex hull is obtained 
from the set of points where each element is calculated from 
normal data pairs. Another convex hull is obtained from the set 
of points where each element is calculated from a newly 
observed datum and a known normal datum. The area of the first 
convex hull is denoted as 𝐻𝑁 and the second area of 𝐻𝑈. The 
area of intersection between 𝐻𝑁 and 𝐻𝑈 is denoted as 𝐼. 

A datum is classified as anomalous if it is above a certain 
threshold d calculated based on the values 𝐻𝑁, 𝐻𝑈, and 𝐼 as 
follows  

 𝑑 = (𝐻𝑁 − 𝐼) + (𝐻𝑈 − 𝐼) () 

This value 𝑑 can be obtained by applying learning algorithms 
over a training set, cross-validation set, and test set while trying 
to find the value 𝑑 that produces the best accuracy. 

III. IMPLEMENTATION 

In this section, a demonstration of the convex-hull method 
for anomaly detection will be conducted. The focus of this 
section is to demonstrate the utilization of convex-hull method, 
particularly that which utilizes the Quickhull approach for 
anomaly detection. The learning algorithm workflow is adapted 
accordingly. The program is written in Python. 

A. Dataset 

The dataset used in this paper is provided by [5] and contains 
medical and lifestyle information for 1500 patients, structured to 
predict the presence of cancer based on various features. The 
dataset has been preprocessed and cleaned. Below is the 
description for each feature in the dataset 

TABLE I.  DATASET FEATURE DESCRIPTION 

Feature Type Range/Values Description 

Age Integer 20 to 80 
Represents the 

patient's age. 

Gender Binary 
0: Male 

1: Female 

Represents the 

gender of the patient. 

BMI Continuous 15 to 40 

Represents the Body 

Mass Index of the 

patient. 

Smoking Binary 
0: No 

1: Yes 

Indicates the 

smoking status of the 

patient. 

GeneticRisk Categorical 

0: Low 

1: Medium 

2: High 

Represents the 

genetic risk level for 

cancer. 

PhysicalActivity Continuous 0 to 10 

Represents the 

number of hours per 

week spent on 

physical activities. 

AlcoholIntake Continuous 0 to 5 

Represents the 

number of alcohol 

units consumed per 

week. 

CancerHistory Binary 
0: No 

1: Yes 

Indicates whether the 

patient has a personal 

history of cancer. 

Diagnosis Binary 
0: No Cancer 

1: Cancer 

The target variable 

indicating the cancer 

diagnosis status. 

B. Convex Hull Algorithm 

The convex hull algorithm used is the Quicksort algorithm 
as described in the Fundamental Theory section with several 
modifications to improve the time and space complexity of the 
code. Below are the steps for the Quickhull algorithm 

1. Check the number of points. If it is less than three then 
return the points. 

2. Sort the points and find the first and last point from the 
sorted set of points. 

3. Divide the set into points to the left and to the right of 
the line whose endpoints are the first and last points. 

4. Find the hull of the two sets using the find_hull 
function. The find_hull function utilizes the distance 
function. This distance function will compute the cross 
products from vector formed by the three points (a 
point, and two other points that form the line) then 
return negative if it is to the right of the line and 
positive if it is to the left of the line. 

5. The find_hull function is called recursively. 

6. The Quickhull function will return an array containing 
the first point, the result from the find_hull function for 
the left set, the the last point, and the result from the 
find_hull function for the right set of points. 

The optimization is made in the 4th step, allowing the 
algorithm to compute the distance only once and using the sign 
of the distance to determine the orientation of the point to the 
line. 

 

Fig. 4. Convex hull of a set of points 
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C. Data Preparation 

Since the dataset is preprocessed, minor preparation is done 
by the author. A normalization process is done for each feature 
of the dataset using the z-score normalization method. The data 
is divided into two data frames, namely the diagnosis_0_data (no 
cancer) and anomaly (cancer). 

D. Finding The Suitable Threshold 

In order to find the suitable threshold of 𝑑, the model is being 
trained by the following steps: 

1. Classify the data according to the value of the 
‘Diagnosis’ attribute. 

2. Set a value 𝑑𝑖𝑛𝑖𝑡. 

3. 85% of the data from the no cancer data is used as a 
training set. The remaining 15% is used in a test set 
with 50% of the data from the cancer data. 

4. Compute the convex hull 𝐻𝑁 of the training set. 

5. For each datum from the test set, pair it with a point 
from the training set. Compute the convex hull 𝐻𝑈  of 
this set of pairs. 

6. Compute the value 𝑑 from the resulting set. If 𝑑 is 
greater than 𝑑𝑖𝑛𝑖𝑡, the predicted value is 1, otherwise it 
is 0. 

7. Compute the accuracy of model with the value 𝑑𝑖𝑛𝑖𝑡 . 

8. Repeat from step 2 for each iteration. 

9. Select the value 𝑑𝑖𝑛𝑖𝑡 that gives the best accuracy. 

The following is the pseudocode for each function involved in 
the process 

function calculate_parameter_space_points(pairs, 

dataset): 

  # Initialize an empty array 

  concatenated_array = 

create_empty_array(length(pairs), 2 * 

number_of_columns_in_dataset) 

 

  # Iterate through each pair of indices 

  for idx, pair in enumerate(pairs): 

    # Concatenate the corresponding rows from the 

dataset 

    concatenated_values = 

concatenate_rows(dataset.loc[pair[0]], 

dataset.loc[pair[1]]) 

     

    # Assign the concatenated values to the array 

    concatenated_array[idx] = concatenated_values 

 

  # Calculate the means and standard deviations 

for each row of the concatenated array 

  means = calculate_means(concatenated_array) 

  stds = calculate_stds(concatenated_array) 

 

  # Create the parameter space points by stacking 

means and standard deviations horizontally 

  parameter_space_points = 

stack_horizontally(means, stds) 

   

  return parameter_space_points 

 

function generate_output_convex_hull(original_df, 

new_element): 

  new_row_df = pd.DataFrame([new_element], 

columns=original_df.columns) 

  dataset = original_df._append(new_row_df, 

ignore_index=True) 

   

  original_indexes = np.arange(len(original_df)) 

  new_index = len(original_df) 

   

  pairs = np.column_stack((original_indexes, 

np.full_like(original_indexes, new_index))) 

   

  output_parameter_space_points = 

calculate_parameter_space_points(pairs, dataset) 

  return quickhull(output_parameter_space_points) 

 

function 

plot_convex_hulls(convex_hull_points_normal, 

convex_hull_points_anomaly, data_normal=None, 

data_anomaly=None): 

  """ 

  Plots the convex hulls of normal and anomaly 

points on a 2D parameter space. 

   

  Parameters: 

  - convex_hull_points_normal: numpy array of 

points forming the convex hull for normal data 

  - convex_hull_points_anomaly: numpy array of 

points forming the convex hull for anomaly data 

  - data_normal: (optional) original normal data 

points to plot 

  - data_anomaly: (optional) original anomaly data 

points to plot 

  """ 

  plt.figure(figsize=(5, 4)) 

 

  # Plot original normal data points 

  if data_normal is not None: 

    plt.scatter(data_normal[:, 0], data_normal[:, 

1], color='green', label='Normal Data') 

 

  # Plot original anomaly data points 
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  if data_anomaly is not None: 

    plt.scatter(data_anomaly[:, 0], 

data_anomaly[:, 1], color='red', label='Anomaly 

Data') 

 

  # Plot convex hull for normal data 

  hull_normal = 

ConvexHull(convex_hull_points_normal) 

  for simplex in hull_normal.simplices: 

    plt.plot(convex_hull_points_normal[simplex, 

0], convex_hull_points_normal[simplex, 1], 

'green', lw=2, label='Normal Hull' if simplex[0] 

== 0 else "") 

 

  # Plot convex hull for anomaly data 

  hull_anomaly = 

ConvexHull(convex_hull_points_anomaly) 

  for simplex in hull_anomaly.simplices: 

    plt.plot(convex_hull_points_anomaly[simplex, 

0], convex_hull_points_anomaly[simplex, 1], 

'blue', lw=2, label='Anomaly Hull' if simplex[0] 

== 0 else "") 

 

  plt.xlabel('μ') 

  plt.ylabel('σ') 

  plt.legend() 

  plt.title('Convex Hulls for Normal and Anomaly 

Data') 

  plt.show() 

 

function intersection_area(hull1, hull2): 

  """ 

  Calculate the intersection area of two convex 

hulls. 

 

  Parameters: 

  hull1 (list of list of floats): Coordinates of 

the first convex hull. 

  hull2 (list of list of floats): Coordinates of 

the second convex hull. 

 

  Returns: 

  float: The area of the intersection of the two 

convex hulls. 

  """ 

  # Create polygons from the convex hull 

coordinates 

  polygon1 = Polygon(hull1) 

  polygon2 = Polygon(hull2) 

   

  # Calculate the intersection of the two polygons 

  intersection = polygon1.intersection(polygon2) 

   

  # Return the area of the intersection 

  return intersection.area 

 

function param_d(hull1, hull2): 

  """ 

  Calculate the parameter d for two convex hulls. 

 

  Parameters: 

  hull1 (list of list of floats): Coordinates of 

the first convex hull. 

  hull2 (list of list of floats): Coordinates of 

the second convex hull. 

 

  Returns: 

  float: The parameter d. 

  """ 

  polygon1 = Polygon(hull1) 

  polygon2 = Polygon(hull2) 

   

  # Calculate the intersection of the two polygons 

  intersection = polygon1.intersection(polygon2) 

   

  return polygon1.area + polygon2.area - 2 * 

intersection.area 

 

list_of_d_values = [] 

list_of_accuracy_score = [] 

 

normal_size = len(diagnosis_0_data) 

anomaly_size = len(anomaly) 

 

d = 0.25 

num_of_iteration = 10 

increment = (0.65 - d) / num_of_iteration 

 

for i in range(10): 

    print("Iteration -", str(i+1)) 

     

    d += increment 

    list_of_d_values.append(d) 

     

    normal_train_size = int(0.85 * normal_size) 

    normal_train_indices = 

np.random.choice(normal_size, normal_train_size, 

replace=False) 
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    normal_train_set = 

diagnosis_0_data.iloc[normal_train_indices] 

     

    # Create normal test set from indices not in 

training set 

    normal_test_set = 

diagnosis_0_data.drop(normal_train_set.index) 

     

    # Randomly select indices for anomaly test set 

    anomaly_test_indices = 

np.random.choice(anomaly_size, int(0.5 * 

anomaly_size), replace=False) 

    anomaly_test_set = 

anomaly.iloc[anomaly_test_indices] 

     

    # Combine normal and anomaly test sets 

    test_set = pd.concat([normal_test_set, 

anomaly_test_set]) 

     

    true_labels = np.zeros(len(test_set)) 

    true_labels[len(normal_test_set):] = 1  # Set 

labels for anomaly instances 

     

    selected_train_pairs = 

np.array(list(combinations(normal_train_set.index, 

2))) 

 

    selected_train_pairs_indices = 

np.random.choice(len(selected_train_pairs), 500, 

replace=False) 

    selected_train_pairs = 

selected_train_pairs[selected_train_pairs_indices] 

    train_parameter_space_points = 

calculate_parameter_space_points(selected_train_pa

irs, normal_train_set) 

    train_convex_hull = 

quickhull(train_parameter_space_points) 

     

    predictions = np.zeros(len(test_set)) 

     

    for idx in range(len(test_set)): 

        test_parameter_space_points = 

generate_output_convex_hull(normal_train_set, 

test_set.iloc[idx]) 

        test_convex_hull = 

quickhull(test_parameter_space_points) 

        predictions[idx] = 1 if 

param_d(train_convex_hull, test_convex_hull) > d 

else 0 

         

    accuracy = accuracy_score(true_labels, 

predictions) 

    print("Accuracy:", accuracy) 

    print() 

    list_of_accuracy_score.append(accuracy) 

 

IV. RESULTS 

From a random sampling of 10 data, it is observed that the 
value of parameter 𝑑 ranges from around 0.25 to 0.65. The 
training is conducted based on this sampling. Ten iterations are 
done as explained in the previous section is conducted. The 
results are as follows 

TABLE II.  ACCURACY RESULTS FOR EACH ITERATION 

Iteration d-value Accuracy 

1 0.29 0.8166666666666667 

2 0.33 0.7976190476190477 

3 0.37 0.7047619047619048 

4 0.41 0.7095238095238096 

5 0.45 0.5452380952380952 

6 0.49 0.6333333333333333 

7 0.53 0.3904761904761905 

8 0.57 0.4595238095238095 

9 0.61 0.3476190476190476 

10 0.65 0.3476190476190476 

Therefore, the model performs best with a d-value of 0.29, 
giving an accuracy of 81.67% in the test set of the data. 

V. CONCLUSTION 

The Conv.Hull-PS anomaly detection method has proven 
itself to be capable of detecting anomalous features in possible 
cancer patients, despite being tested in a simplified machine 
learning workflow. With this algorithm, the underlying 
distribution of each feature is unimportant, as all are represented 
with a point in the normal distribution parameter space. 

Overall, the findings suggest that the Conv.Hull-PS 
algorithm can serve as a valuable tool for early cancer detection, 
potentially leading to improved outcomes for patients through 
early intervention and treatment. However, further research and 
validation are necessary to confirm the effectiveness and 
generalizability of this approach across different datasets and 
populations. 

APPENDIX 

The code implementation used in this paper can be seen and 
retrieved on my Kaggle notebook: 

https://www.kaggle.com/code/julianchandrasutadi/anomaly
-detection-using-convex-hull-method 
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